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Abstract. The objective of this study is to introduce and formalize an
abstraction procedure that applies to a rather general class of dynami-
cal systems, that is to models known as discrete-time stochastic hybrid
systems (dt-SHS). The procedure abstracts the original dt-SHS into a
Markov set-chain (MSC) in two steps. First, a Markov chain (MC) is
obtained by partitioning the hybrid state space, according to a control-
lable parameter, into non-overlapping domains and computing transition
probabilities for these nodes according to the dynamics of the dt-SHS.
Second, explicit error bounds for the abstraction that depend on the pa-
rameter are derived, and are associated to the values of the MC, thus
obtaining a MSC. We show that one can arbitrarily increase the accu-
racy of the abstraction by tuning the refinement parameter, albeit at
an increase of the cardinality of the MSC. The application of a number
of results from the MSC literature enables the analysis of the dynam-
ics of the original dt-SHS. In this work, the asymptotics of the dt-SHS
dynamics are assessed within the abstracted framework.

1 Introduction and Objectives

Hybrid Systems (HS) are dynamical system with interleaved continuous and
discrete behaviors. Their great expressive power and complexity of allowed dy-
namical behaviors are offset, as expected, by two main issues. The first is the
subtlety of their theoretical investigation. Much research has been directed to
further the understanding of their properties from the perspective of Systems
Theory. The second is the issue of scalability, in particular with respect to com-
putational complexity. For instance, the formal verification of properties of the
system (e.g., through the use of model checking procedures [1]), whereby the
state space is semi–exhaustively searched, is complicated by the continuity of
the space, on the one hand, and by the possible increase in its dimension, on the
other.
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That of model checking of HS specifications [2] is an intensely investigated area.
A noteworthy technique which is often employed is that of abstraction. According
to this approach, a system with a smaller state space (possibly finite) is obtained,
which is equivalent, in some sense, to the original system. Systems equivalence
is usually defined via the notions of language equivalence and bisimulation [3, 4].
Recently, approximate notions of system equivalence [5, 6] have been developed
to generalize the abstraction problem, where a metric is introduced to quantify
the distance between the original system and the abstracted one. [7] proposes
an algorithm and implement a tool to construct an approximate abstraction of
a HS by means of a timed automaton. In [8] a notion of approximate bisimilar-
ity is proposed for a class of stochastic hybrid systems: these are HS which are
endowed with probabilistic terms.
The present contribution introduces a formal abstraction procedure for a general
class of Stochastic Hybrid Systems (SHS). We investigate the dynamics from a
perspective, which is different than the classical one of the “solution process.” In-
stead, we look at the transition probability function to describe the likelihood of
the presence of an execution in a particular region of the state space, throughout
time. The evolution of this likelihood follows the Kolmogorov forward equation.
In Physics, this approach is adopted by the study of the Fokker-Planck equation.
Recently [9] tried to extend to the SHS framework a computational approach
to solve this equation. This tentative has shown that this computation is often
mathematically intractable. Another instance of this analytical and computa-
tional difficulty is given by the solution of the Master equation [10], which arises
in the description of chemical and biological networks and is a particular instance
of the Fokker-Planck relation.
This work leverages a discrete time framework and the presence of spatial guards
in a class of SHS (dt-SHS) to be able to express the transition probability func-
tion in a compact way. After introducing a partitioning procedure for the hybrid
state space, the transition probabilities between these partitions are approxi-
mately computed by employing the concept of probabilistic reachability. Hence,
a Markov chain (MC) is built up. Furthermore, by raising some continuity as-
sumptions on the entities that characterize the dynamics of the dt-SHS, explicit
error bounds are associated to the transition probabilities. These error bounds
depend on the diameter of the introduced partitions. This allows to formally
set up a Markov set-chain (MSC) associated to the partitioning procedure. The
asymptotics of the MSC can be then related to that of the dt-SHS.
The present technique can be related to the work in [11], where the weak con-
vergence to the original process of a discretization of the continuous dynamics
into that of a MC defined on a set of grid points is proven. No error bounds
are explicitly derived though. Both this work and [11] approximate the original
process with a probabilistic discrete graphical structure. This connects to efforts
on automatic verification (model checking) of stochastic timed automata (that
is, a subclass of SHS), which has been investigated in [12–15].
A general understanding of the area of probabilistic model checking for SHS is
however still far. As a first result towards this goal, we have shown the ability
to construct a finite state abstraction that allows us to efficiently compute the
steady state of the original system with arbitrary precision.
The paper is organized as follows. In Section 2 the dt-SHS model is introduced.
In Section 3 an overview on MSC is given. In Section 4 we look into the dy-
namics of the dt-SHS, by discussing the notion of probabilistic reachability. In



Sections 5 and 6 we introduce the abstraction procedure, and employ it to in-
vestigate the asymptotics of the original system. We apply an implementation
of the algorithm to a case study in Section 7, and conclude in Section 8.

2 dt-SHS Model

In this section we introduce the dt-SHS model. This mathematical framework
is inspired by that introduced in [16], albeit with some modifications on the
events generating mechanisms. Here we model the presence of a physical, forcing
guards set, rather than introducing state-dependent transition probabilities, as
in [16]—extensions to this more general case are discussed in Section 8. The
use of a discrete time framework is motivated by the simplicity in handling
measurability issues for events on the underlying probability space, as well as by
the possibility to directly compute transition probabilities for the whole domain.
Definition 1 (dt-SHS). A discrete time stochastic hybrid system is a tuple
H = (Q, n,G, T, R), where

– Q := {q1, q2, . . . , qm}, for some finite m ∈ N, is the discrete state space;
– n : Q → N assigns to each q ∈ Q the dimension of the continuous state space

Rn(q). The continuous part of the dynamics evolves within a “domain” for
each mode q, which is defined to be a compact subset D∗q ⊂ Rn(q). The whole
hybrid state space is given by S∗ := ∪q∈Q{q} × D∗q ;

– G := ∪q∈Q{q} × Gq,Gq = {gij ; i, j ∈ Q, i 6= j, gij ⊆ D∗i } is the set of spatial
guards. We assume that ∀i, j, k ∈ Q, i 6= j 6= k, gij ∩ gik = ∅, and that
the guards have non-trivial volume: L(gij) 6= 0,∀i, j ∈ Q, i 6= j, where L(·)
denotes the Lebesgue measure associated to any Borel subset of a particu-
lar domain. Let us further introduce the set Di := D∗i \{∪j 6=i,j∈Qgij}, the
“invariant” of mode i, and S := ∪q∈Q{q} × Dq;

– T : B(D∗(·)) × S → [0, 1] is a Borel-measurable stochastic kernel (the “tran-
sition kernel”) on D∗(·) given S, which assigns to each s = (q, x) ∈ S a
probability measure on the Borel space (D∗q ,B(D∗q )): T (dx|(q, x));

– R : B(D∗(·)) × G × Q → [0, 1] is a Borel-measurable stochastic kernel (the
“reset kernel”) on D∗(·), given G×Q, that assigns to each s = (q, x) ∈ G, and
q′ ∈ Q, q′ 6= q, a probability measure on the Borel space (D∗(q′),B(D∗(q′))):
R(dx|(q, x), q′). ut

The system initialization at the initial time k = 0 is specified through some
probability measure π0 : B(S∗) → [0, 1] on the Borel space (S∗,B(S∗)). Here
B(S∗) is the σ-field generated by the subsets of S∗ of the form ∪q{q}×Bq, with
Bq denoting a Borel set in D∗q . For details on measurability and metric properties
of H, the reader is invited to refer to [16, 17]. Notice that the transition and
reset kernels have a different domain of definition, but the same support. Next,
we define the notion of execution for the above model (throughout the paper,
random processes will be denoted in bold fonts, while random variables in normal
typesets).
Definition 2 (Execution). Consider a dt-SHS H = (Q, n,G, T, R). An exe-
cution for H, associated with an initial distribution π0, is a stochastic process
{s(k), k ∈ [0, N ], N ∈ N} with values in S∗, whose sample paths are obtained
according to the following algorithm:



extract from S∗ a value s0 = (q0, x0) for s(0), according to the distribution π0;

for k = 0 to N − 1,

if there is a j 6= qk, j ∈ Q, such that xk ∈ gqk,j ,

then extract a value sk+1 ∈ S∗ for s(k + 1), according to R(· |sk, j);

else extract a value sk+1 ∈ S∗ for s(k + 1), according to T (· |sk);

end. ut
Remark 1 (a note on Event Detection). The assumptions in Def. 1 on the shape
of the guards set allows to disregard potential issues (such as non-determinism)
with the existence of “events,” that is conditions in time where an execution
belongs to the guards set. We shall not further pursue the interpretation of
an event “pointwise,” that is by associating an event time and an event point
to a particular (deterministic) initial condition and a realization of the hybrid
execution, as suggested by the procedure in Definition 2. This approach, which
is usual for the deterministic HS case, is quite more complicated to implement in
the stochastic case. Instead, as already argued in Section 1, we compute certain
transition probabilities, which will be referred to any point in S∗. That is, we
shall compute transition probabilities between invariants and guards of H, from
guards back to invariants, as well as combinations or products (forward in time)
thereof, thus characterizing probabilistically the evolution of a hybrid execution
on S∗. For general stochastic models (for instance, the SHS framework in [18]),
determining or computing transition probabilities may not be easy. However, in
the proceeding of this work we show that for the current dt-SHS setup, such a
computation is feasible. ut
As mentioned, the introduced (autonomous) dt-SHS is related to the (controlled)
SHS in [16], where the additional presence of a transition kernel allows for jumps
within the invariant set. The theory developed in this work can be extended to
account for similar terms, which we do not do for the sake of simplicity. The
reader is invited to refer to [16] for connections between this model, and other
SHS models in the literature, as well as for the proof of further properties (e.g.,
the Markov property).

3 Markov set-chains

We define here the concept of Markov set-chains, which in this paper is used as
an abstraction framework for dt-SHS. We recall some results from [19], which
are of interest for the present work.

Definition 3. Let P,Q ∈ Rn×n be nonnegative matrices (not necessarily stochas-
tic) with P ≤ Q. We define the following “ transition set:”

[P,Q] = {A ∈ Rn×n : A is a stochastic matrix and P ≤ A ≤ Q} �

In the proceeding, we assume that the set [P,Q] 6= ∅. When the “bounding ma-
trices” will be clear by the context, we will use the more compact notation [Π].
We can define a Markov set-chain as a non-homogeneous discrete-time Markov
chain, where the transition probabilities vary non-deterministically within a com-
pact transition set [Π] at each time step. More formally,



Definition 4. Let [Π] be a transition set, i.e. a compact set of n× n stochastic
matrices. Consider the set of all non-homogeneous Markov chains having all
their transition matrices in [Π]. We call the sequence

[Π], [Π]2, · · ·

a Markov set-chain, where [Π]k is defined by induction as the set of all possible
products A1, · · · , Ak, such that ∀i = 1, · · · , k, Ai ∈ [Π].
Let [π0] be a compact set of 1 × n stochastic vectors, introduced similarly as in
Def. 3. We call [π0] the initial distribution set. ut

The compact set [πk] = [π0][Π]k is the k-th distribution set and

[π0], [π0][Π], · · ·

is the Markov set-chain with initial distribution set [π0].
It can be shown that each element [πk] is a convex polytope if [π0] is a convex

polytope and [Π] is a transition set. It should be noticed that the number of
vertices of [πk] increases with k, thus the computational burden to obtain [πk] for
large values of k should be accounted for. However, it is possible to compute tight
(see [19]) upper and lower bounding matrices Lk,Hk for [πk] in a very efficient
way, in particular the computation of Lk,Hk can be recursively obtained from
Lk−1,Hk−1.

Definition 5. For any stochastic matrix A, its coefficient of ergodicity is defined
as follows:

T (A) =
1
2

max
i,j

||ai − aj ||,

where ai is the i–th row of A. ut

The above definition can be directly extended to Markov set-chains:

Definition 6. For any transition set [Π], its coefficient of ergodicity is defined
as follows:

T ([Π]) = max
A∈[Π]

T (A).
�

Notice that since T (·) is a continuous function and [Π] a compact set, the
maximum argument of T ([Π]) exists. Notice that T ([Π]) ∈ [0, 1]: this value
provides a measure of the “contractive” nature of the Markov set-chain: the
smaller T ([Π]), the more contractive the MSC. The exact value of T ([Π]) can
be hard to be compute, but it can be upper bounded as follows, [19].

Theorem 1. Let [Π] be the interval [P,Q], then:

T ([Π]) ≤ 1
2

max
i,j

n∑
k=1

max{|pik − qjk|, |pjk − qik|} , T ∗([Π]).

The following notion is important for characterizing the convergence of a MSC:

Definition 7. Suppose r is an integer such that T (A1, · · · , Ar) < 1, ∀A1, · · · , Ar ∈
[Π]. Then [Π] is said to be product scrambling and r its scrambling integer. ut



We now illustrate some results on the convergence of MSC.

Theorem 2. Given a product scrambling MSC with transition set [Π] and ini-
tial distribution set [π0], then there exists a unique limit set [π∞] such that
[π∞][Π] = [π∞]. Moreover, let r be the scrambling integer. Then for any positive
integer h,

d([πk], [π∞]) ≤ Kβh (1)

where K = [T ([Π]r)]−1d([π0], [π∞]) and β = T ([Π]r)
1
r < 1. Thus

lim
k→∞

[πk] = lim
k→∞

[π0][Π]k = [π∞].
�

As we argued before, the exact computation of [π∞] can be expensive. How-
ever, it is possible to use the upper and lower bounding matrices Lk,Hk de-
fined above to obtain an accurate estimate of [π∞] with a reasonable com-
putational complexity. In fact, Lk,Hk converge to a value L∞,H∞ such that
[π∞] ⊆ L∞,H∞.
Define the diameter of a compact set (referred to either matrices or vectors) as

∆([Π]) = max
A,A′∈[Π]

||A−A′||.

The following result provides an efficient procedure to compute an upper bound
for the diameter of the limit set [π∞].

Theorem 3. Given a product scrambling Markov set-chain with transition set
[Π] = [P,Q] and such that T ([Π]) < 1, then

∆([π∞]) ≤ ∆([Π])
1− T ([Π])

≤ ||Q− P ||
1− T ∗([Π])

.
�

4 Probabilistic Dynamics

The model described in Definition 1 is quite general and allows for a wealth
of possible behaviors. Even some further knowledge of the structure of the dy-
namics, beyond the general stochastic kernels T,R that characterize it, are in
general not translatable into a closed-form expression for the solution process
of H. Then, as anticipated in Section 2 (see Remark 1), in order to study the
dynamical properties of H, two avenues can be pursued. The first looks at the
ensemble of allowed realizations that spring out of the support of the initial dis-
tribution, according to the steps in Definition 2, possibly averaged over the initial
distribution. Monte Carlo simulations are an example of this approach. The sec-
ond instead tries to characterize probabilistically the presence of the solution
process in certain regions of S∗, as time progresses. This characterization can
leverage the ability of defining and computing quantities related to the concept
of probabilistic reachability [16]. More precisely, it is of interest to characterize
the following likelihood: given a point s0 ∈ S∗, what is the probability that the
solution process s(·) of H, starting from s0, is located in the set A ∈ B(S∗) at
time k > 0? Similarly, given a point s0 ∈ S∗, what is the probability that the
solution process s(·) of H stays within the set A ∈ B(S∗), s0 ∈ A, for all the



time k ∈ [0, N ], N < ∞?
It is not a case that these stochastic reachability problems are the related to the
two deterministic reachability approaches taken in [20, 7] for constructing finite
abstractions of deterministic HS.
Given the dependence of the definition of the two sets of probabilistic kernels on,
respectively, the invariants and the guards sets, we are in particular interested
in computing the probability of reaching these subsets of the hybrid state space.
For instance, considering two modes q, q′ ∈ Q, we call pq,q′(x) the probability
that a trajectory, starting from a point (q, x) ∈ S, has to transition (according to
T (·|(q, x))) in a time step into any other domain q′ 6= q, or possibly to continue
evolving in q′ = q:

pq,q′(x) ,
∫

gq,q′

T (dy|(q, x)), if q′ 6= q, (2)

pq,q(x) ,
∫
Dq

T (dy|(q, x)) = 1−
∑
q′∈Q
q′ 6=q

∫
gq,q′

T (dy|(q, x)).

Similar is the case where (q, x) ∈ S∗\S, where we may be interested in the
probability that the trajectory is reset into an invariant q′ 6= q by the application
of R(·|(q, x), q′): let us denote this probability p(q,q′),q′(x):

p(q,q′),q′(x) ,
∫
Dq′

R(dy|(q, x), q′). (3)

Notice that, as the support of T and of R coincides, the contribution of both
terms is similar, except for the fact that T is associated with a one-step contin-
uous motion, while R to an instantaneous reset.
Investigating similar quantities for more complex dynamics, or over a longer
time interval, involves conditioning the probability backwards in time and end-
ing up with the quantities discussed above. For instance, we may be interested
in the following transition, for q, r, s ∈ Q, q 6= r, r 6= s: x ∈ gq,r

R→ Dr
T→ gr,s :

p(q,r),r(x)pr,s(·). This event is related to the following probability:

P (s(1) ∈ gr,s|s(0) = (q, x) ∈ gq,r) =
∫
Dr

∫
gr,s

R(dy|(q, x), r)T (dz|(r, y))

=
∫
Dr

R(dy|(q, x), r)pr,s(y) (4)

The above quantity shows that the contributions of the one-step probabilities
have to be necessarily “averaged” over the influence of the stochastic kernels
that precede them. As already mentioned, the interplay between transition and
reset probabilities is a characteristic feature of SHS. This will also hold with
reference to a particular initial distribution π0 which may characterize, with its
support A ∈ B(S∗), the allowed starting points of the hybrid execution.
The terms in (2)-(3), and multiplications thereof, are then characteristic of the
computations we want to perform to study the dynamics of the SHS H. In prin-
ciple, we may be able to associate a transition probability to each couple of



elements taken from the set of invariants and guards. This would allow to ab-
stract the dynamics of H into those of a discrete m2-dimensional MC (where
m = card(Q)). However, by closely looking at the quantity in (2) [resp. (3)], it
can be realized that it is necessary to compute it over the whole invariant Dq

[over the whole guard gq,q′ ], averaged over the contribution of the incoming re-
set maps R(·|(·, ·), q) [the transition kernel T (·|(q, ·))]. To make sense, these last
quantities would have to depend on other probabilities, and so on backwards,
until integrating over an initial distribution. This computation is rather unfeasi-
ble, and its bottleneck hinges on the dependence of T and R on the continuous
component of the hybrid state space.
Rather that aiming at abstracting the dynamics of the SHS H into an m2-
dimensional MC, we may allow an abstraction into a higher dimensional struc-
ture, while improving the computability of the procedure. The technique to
achieve this is based on a continuity assumption over the dynamics, and a state-
partitioning procedure. This approach is described in the following.

5 Abstraction Procedure

In the following, an abstraction procedure for the SHS model H, as introduced
in Section 2, is given. The SHS H will be abstracted into a Markov set-chain, de-
scribed by a one-step transition set [Π] = [P,Q]. The computations involved in
obtaining the abstraction are reduced to integrations over the continuous part of
the hybrid state space. It is argued that this procedure requires some necessary
approximations, however explicit bounds on the errors will be obtained. Asso-
ciating error bounds to the computed transition probabilities directly connects
with the theory of MSC, providing a direct definition of the transition set [Π].
The precision of the abstraction will depend on a parameter δ . It is desirable
for the abstraction to show, in the limit as δ → 0, some convergent properties
to the original SHS H.

Approximation of State-dependent Transitions and Resets.
As we discussed in Section 4, the dependence of transition and reset kernels
on respectively the invariants and the guards set, and their extended supports,
makes the computation of transition probabilities via nested integrals of prod-
uct terms as in (2)-(3) computationally expensive. Introducing some “regularity
assumptions” on the probabilistic kernels, it is be possible to achieve a “memo-
ryless” approximation for these transition probabilities, where their calculation
does not depend on the continuous part of the hybrid space S. Indeed, if we aim
at obtaining a finite abstraction of H, it makes sense to get a procedure which
does not depend an uncountable component of S.
Let us suppose that the stochastic kernels T and R, which depend on the con-
tinuous component of the hybrid state in the Definition 1 of the SHS, admit
densities respectively t and r. Similarly, let us assume the initial probability dis-
tribution π0 has a density p0. It is assumed that p0, t and r satisfy the following
Lipschitz condition.

Assumption 1 (Continuity of the Stochastic Kernels)

1. |p0(s)− p0(s′)| ≤ k0‖x− x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗q ,
2. |t(x̄|s) − t(x̄|s′)| ≤ kT ‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ Dq, and

(q, x̄) ∈ D∗q ,



3. |r(x̄|s, q̄) − r(x̄|s′, q̄)| ≤ kR‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗q\Dq,
(q̄, x̄) ∈ D∗q , and q̄ 6= q,

where k0, kT and kR are finite Lipschitz constants. ut

For the sake of computations, we also stress the implicit assumption, raised in
Definition 1, that for each q ∈ Q, the continuous component D∗q associated to
such mode is a bounded subset of Rn(q).
Let us introduce the following quantities (see Table 1 for a compendium of them),
describing the (finite) volume measures of particular subsets of the domains:
λ∗q = L(D∗q ), λq = L(Dq), λq,r = L(gq,r), λ =

∑
q∈Q L(Dq), λ∗ =

∑
q∈Q L(D∗

q ),
where L is the Lebesgue measure of a bounded subset of a Euclidean space.
Since D∗q = Dq ∪ Gq, it follows that ∀q ∈ Q, λq = λ∗q −

∑
r∈Q
r 6=q

λq,r.

Consider a mode q ∈ Q. Pick any two points (q, x), (q, x′) ∈ Dq. Then, with
reference to the quantity in (2) and according to Assumption 1, let us compute,
∀r ∈ Q, r 6= q,

|pq,r(x)− pq,r(x′)| =

∣∣∣∣∣
∫

gq,r

T (dz|(q, x))−
∫

gq,r

T (dz|(q, x′))

∣∣∣∣∣
≤

∫
gq,r

|T (dz|(q, x))− T (dz|(q, x′))| ≤ λq,rkT ‖x− x′‖.

A similar bound is obtained for the case r = q, which depends on the quantity
λq. Furthermore, a similar bound can be found for the quantity in (3): selecting
any two points (q, x), (q, x′) ∈ gq,r ⊂ D∗q , r 6= q, we have:

|p(q,r),r(x)− p(q,r),r(x′)| =
∣∣∣∣∫
Dr

R(dz|(q, x), r)−
∫
Dr

R(dz|(q, x′), r)
∣∣∣∣

≤
∫
Dr

|R(dz|(q, x), r)−R(dz|(q, x′), r)| ≤ λqkR‖x− x′‖.

Hybrid State Space Partition.
Let us now introduce a partition of the hybrid state space S (see Table 1). Recall
that S can be written as S = ∪q∈Q{q} × D∗q = ∪q∈Q{q} × {∪r∈Q

r 6=q
gq,r ∪ Dq}.

With regards to a particular mode q ∈ Q, let us introduce a partition of D∗q of
cardinality cδ

q = dδ
q+

∑
r∈Q
r 6=q

eδ
q,r, where the first term dδ

q refers to the invariant Dq,

while the other addends eδ
q,r refer to the corresponding guard sets gq,r. These

terms are all greater than or equal to one. Let us introduce their respective

measures λj
q and λk

q,r, so that λq =
∑dδ

q

j=1 λj
q, and λq,r =

∑eδ
q,r

k=1 λk
q,r. The above

dependence on the parameter δ will be made clear shortly.
We do not impose any structure on the partition, but only require it to respect
(that is, to not intersect) the boundaries between domain and guards, and those
between each couple of adjacent guards. It is then possible to express the domain
D∗q , associated to mode q ∈ Q, as the union of the following disjoint sets:

D∗q = {∪r∈Q
r 6=q

{∪eδ
q,r

j=1g
j
q,r}} ∪ {∪

dδ
q

j=1D
j
q}.



We associate a discrete mode to each of these partitions: let us introduce mode
qj for Dj

q, and mode qj
r for gj

q,r. The parameter δ is defined to be

δ = maxq∈Q{max(εq, γq)}, where
εq = maxr∈Q

r 6=q
j=1,...,eδ

q,r
sup{‖x− x′‖ : x, x′ ∈ gj

q,r} = maxr∈Q
r 6=q

j=1,...,eδ
q,r

εj
q,r,

γq = maxj=1,...,dδ
q
sup{‖x− x′‖ : x, x′ ∈ Dj

q} = maxj=1,...,dδ
q
γj

q .

In other words, δ represents the largest diameter of the partitions defined on S.
Let us choose a representative point within each single cell introduced through
the partition: ∀q ∈ Q,∀j = 1, . . . , dδ

q select a point x̄j
q ∈ Dj

q; ∀q ∈ Q, r 6= q,∀j =
1, . . . , eδ

q,r select a point x̄j
q,r ∈ gj

q,r.
We will now revisit the computation of the probabilistic quantities (2-3) intro-
duced above, in order to define a MSC that embeds the original SHS H. To
this aim, we associate to each element of the above partition a distinct state of
the MSC. The upper and lower bounds of the transition probabilities directly
define the transition set. As mentioned at the end of Section 4, we show that
these bounds for the transition probabilities can be approximately computed by
raising memoryless assumptions on the continuous part of the quantities into
play. It is clear that the values of these bounds depend on the partition grid
given by δ, and on the structure of the dynamics of H. To be more precise,
we shall approximate the quantities in (2-3) with ones that will be based on
computations performed on the representative points. The quantification of the
introduced errors is based on Assumption 1. The new transition probabilities
will be intuitively denoted in a similar fashion as the relations in (2-3).
Let us start from the relation in (2):

∀x ∈ Dj
q, pqj ,rk(x) =

∫
gk

q,r

T (dy|(q, x)) ≈ pqj ,rk(x̄j
q), (5)

More precisely, |pqj ,qk
r
(x) − pqj ,qk

r
(x̄j

q)| ≤ λk
q,rkT γj

q ≤ λ∗kT δ. Notice that, if x ∈
Dj

q ⊆ Dq, T (dy|(q, x)) = T (dy|(qj , x)).
Now, focusing on equation (3), we have:

∀x ∈ gj
q,r, p(q,r)j ,rk(x) =

∫
Dk

r

R(dy|(q, x), r) ≈ p(q,r)j ,rk(x̄j
q,r), (6)

where |p(q,r)j ,rk(x) − p(q,r)j ,rk(x̄j
q,r)| ≤ λk

rkRεj
q,r ≤ λ∗kRδ. Notice that, if x ∈

gj
q,r ⊆ D∗q , R(dy|(q, x), r) = T (dy|(gj

q,r, x), Dk
r ).

Similar transition probabilities and bounds can be referred to the initial distri-
bution π0.

6 Steady state computation using the MSC abstraction

In this section we show that it is possible to infer the asymptotic behavior of the
SHS H using the introduced Markov set-chain abstraction M.
We start by providing an intuitive justification of why the abstraction procedure
is able to yield some conclusions about the asymptotic dynamics of the original



component form parts partitions cardinality size diameter

hybrid space
of H S∗ =

⋃
q∈Q

{q} × D∗q D∗q cδ λ∗ δ

domain D∗q = Dq ∪ Gq Dq,Gq cδ
q λ∗q γq ∨ εq

invariant Dq Dj
q dδ

q λq γq

invariant
sections

Dj
q 1 λj

q γj
q

guards Gq =
⋃

r∈Q
r 6=q

{gq,r} gq,r gj
q,r

∑
r∈Q
r 6=q

eδ
q,r λ∗q − λq εq

guard
sections

gj
q,r 1 λj

q,r εj
q,r

Table 1. Components of the SHS and elements of the partition that yields the MSC,
with corresponding quantities of interest.

system.
As argued before, the possibility of finding explicit bounds for the errors associ-
ated to the approximate computations of the transition probabilities of the MSC
allows to introduce a “conservative estimate” of the actual transition probabil-
ities between regions of the state space of the original dt-SHS. Qualitatively,
the key point is that if we select a small enough bound for the diameters of
the partition, the contractive nature of M dominates over the approximation
errors. The contractivity of M depends on the dynamics and the structure of
H. Furthermore, the procedure suggests that, by tuning the parameter for the
partition, we can estimate the asymptotic behavior of H with arbitrary preci-
sion. In passing, this concept is most likely related to the fact that stable linear
systems admit approximately bisimilar finite abstractions [21].
We now make the above discussion quantitative. Given a desired precision ε > 0,
we integrate the procedure for the partition of H into an algorithm, which com-
putes the steady of the MSC abstraction M until a maximum error of ε > 0
is obtained for a partition parameter δ(ε). As discussed above, the steady state
vector [π∞] for M is an estimate of the invariant measure π∞ for H, with a
confidence bound given by the diameter ∆([π∞]). The first idea would be to
initialize a partition according to a value δ(ε), which guarantees a precision ε for
the steady state computation. To this aim, we need to relate δ and ε. The tran-
sition set [Π] = [P,Q] as constructed in the previous section has the following
property:

∆([Π]) ≤ ||Q− P || = (λ∗kT δ)cδ

.

with λ∗, kT constants as defined in the above section. In order to achieve a
precision ε in the steady state computation, a sufficient condition to achieve
∆([π∞]) ≤ ε is the following:

(λ∗kT δ)cδ

≤ ε (1− T ([Π])) . (7)

It is clear that if T (|[Π]|) < 1 there always exists a value of δ(ε) that satisfies
this inequality, since the LHS expression goes to zero as δ goes to zero. The
main issue is however that, without an idea of the transition probabilities that



define [Π], one cannot estimate T ([Π]). Since 0 ≤ T ([Π]) ≤ 1, the set of feasible
values for δ that satisfy equation (7) ranges from a finite upper bound δ0 (when
T ([Π]) = 0) to 0 (when T ([Π]) = 1). This makes sense: until we have no infor-
mation about the contractive nature of [Π], there is no possibility to estimate
the limit set behavior. For this reason, it is impossible to establish a priori a
value for δ that guarantees a desired precision in the steady state computation
using the abstraction M. However, we can choose an “optimistic” initial value
δ0 as defined above, and apply the following iterative algorithm:

Algorithm 1 (Compute steady state of H with precision ε)

input: (H, ε);

initialize integer k = 0 and real T ∗(0) = 0;

for k ≥ 0

if T ∗(k) = 1 or T ∗(k) = T ∗(k − 1)

then set δ(k) = aδ(k − 1), a < 1;

else set δ(k) such that equation (7) holds with T ([Π(k)]) = T ∗(k);

compute M(k) defined by [Π(k)], [π0(k)] according to δ(k);

if ∆([Π(k)])
1−T ∗([Π(k)]) ≤ ε then exit;

else set T ∗(k + 1) , T ∗([Π(k)]) and k , k + 1;

end ;

compute L∞,H∞ bounding [π∞] for M(k);

output: (L∞,H∞). ut

Notice that, ∀k ≥ 0, δ(k + 1) < δ(k). Iterating the algorithm, we obtain a
sequence {[Π(k)]}k≥0, with [Π(k + 1)] ⊂ [Π(k)]. This implies that T ([Π(k)]) is
non-increasing with k. Moreover, if T∞ = lim

k→+∞
T ([Π(k)]) < 1, then T ([Π(k)])

is decreasing. Namely, if T∞ < 1 it follows that we can arbitrarily increase the
accuracy of our abstraction until

(λ∗kT δ)cδ

≤ ε (1− T∞) . (8)

When this happens the algorithm terminates, and we compute [π∞] using the
upper and lower bounding matrices L∞,H∞, as described in Section 3.
We now discuss the computational burden of our procedure. It is clear that the
main bottlenecks are (1) the abstraction procedure for the partitioning of the
hybrid state space; and (2) the limit set computation on the abstraction MSC.
The first computation directly depends on the parameter δ, which is related to
T∞ by (8). The second computation depends on two parameters: the cardinality
of the MSC and the convergence speed. The state cardinality is cδ, and depends
on δ, while the convergence speed can be related to T∞ by (1). The main weight
in the computational complexity of our abstraction procedure is T∞.
For the above arguments, it can be interesting to interpret T∞ as the coefficient
of ergodicity T (H) of the SHS H, and possibly compare this value with other
convergence bounds directly derived on the structure and the dynamics of H.



7 Numerical Study

We implement the proposed abstraction procedure on a simple one-dimensional
dynamical system, whose dynamics is described by the following SDE, defined
for t ≥ 0:

dXt = f(Xt)dt + dBt, with X0 ∼ U(A). (9)

The drift depends on a function f : R → R, assumed to be continuous and
bounded. The term Bt denotes a standard Wiener process. U(A) is the uniform
distribution, over some compact set A ⊂ R.
The study in [22] proposes an abstraction of the system in relation (9), which
is obtained by discretizing the state space R into overlapping intervals, and by
introducing a dt-SHS model. The discrete structure of such a dt-SHS is a birth-
death MC. The transition probabilities between a node and its neighbors of the
MC are computed through the first hitting times for the solution process within
the domain associated to that node. Interestingly, these probabilities have a
closed form in the one-dimensional case. This procedure would also naturally
induce a discretization of time, as the probabilistic dynamics are only looked at
the transition instants. Some convergence properties of the discretized model to
(9) are shown.
In the following, we again introduce a dt-SHS as an abstraction of (9). While a
discretization of the state space similar to [22] is possible, we decide to introduce
an easier one. Again, a MC structure is obtained, whose transition probabilities
are computed by the technique proposed in this work. This will also yield some
explicit error bounds. Unlike the abstraction in [22], the one proposed in this
work is prone to be extended to continuous spaces of dimension higher than one.
Time will be directly discretized at the onset: rather non-stringent sufficient
conditions can be given for the convergence of this procedure to the original
continuous-time process [23]. More precisely, the SDE in (9) is discretized in time
according to a first-order Euler-Maruyama scheme, with discretization step ∆ >
0, to obtain the following, for any n ≥ 0: X(n+1)∆ ∼ N (Xn∆ + ∆f(Xn∆),∆),
where N (m,σ) is a normal random variable with mean m and variance σ2.
For computational necessity, we shall introduce some approximation outside the
compact interval K = [−K, K]. Let us partition this interval K into 2l sections of
length 2δ, where δ = K/l, and centered at the points x̄k = −K + (2k − 1)δ, k =
l, 2, . . . , l. Call these partitions Dk = [−K + 2(k − 1)δ,−K + 2kδ].
Additionally, consider two regions for the open intervals Dlb = (−∞,−K],Dub =
[K, +∞), “centered” at the points x̄lb,ub = {±(K+δ)}. Consider for convenience
the extended index set Q = {l, 2, . . . , l, lb, ub}. Conditional on Xn∆ = x̄k, for

δ-K+δ-K-δ

lth partition

K-K

2δlb ub

0
−δ K+δK-δ

2δ 2δ

Fig. 1. Abstraction procedure for the one-dimensional system in (9).



any k ∈ Q, the process at time (n + 1)∆ is distributed according to T (·|x̄k) ,
N (·;mk,∆), where mk = x̄k + ∆f(x̄k).
This discretization procedure induces a dt-SHS, where the l + 2 domains make
up the state space as S =

⋃
k∈Q{k} × Dk. The continuous dynamics are char-

acterized, for any (k, x) ∈ S, by the kernels T (·|(k, x)) = N (·;x + ∆f(x),∆).
The guards set is intuitively made up of the points in G = {−K + 2(k− 1)δ, k =
l, 2, . . . , l}, and the resets coincide with the transition kernels, that is, for any
k, k′ ∈ Q, k′ 6= k, R(·|(k, x), k′) = T (·|(k, x)).
Given a standard random variable x ∼ N (0, 1), x ∈ R, with its associated den-
sity φ(x) and distribution Φ(x), we can express the distribution of x̃ ∼ N (m,σ)
as Φx̃(x) = Φ(x−m

σ ). The Gaussian distributions associated to the transition
kernels are locally Lipschitz. Given two points x, x′ ∈ R, it is easy to set up the
following bound:

|φ(x)− φ(x′)| ≤ 1√
2π

|eK − 1|
K

‖x− x′‖ ≤ 2δ√
2π

|eK − 1|
K

. (10)

Consider a mode k ∈ Q\{lb, ub}. Let us compute the approximate transition
probabilities between the different modes of the introduced dt-SHS as follows,
for any h ∈ Q\{lb, ub}, based on the representative point x̄k ∈ Dk:

pk,h(x̄k) = Φ

(
(x̄h + δ)− x̄k

∆

)
− Φ

(
(x̄h − δ)− x̄k

∆

)
,

pk,lb(x̄k) = Φ

(
−K − x̄k

∆

)
, pk,ub(x̄k) = 1− Φ

(
K − x̄k

∆

)
.

Based on (10) and on the size of the domains, we associate to each transition
probability the RHS error (2δ)2√

2π

|eK−1|
K . 3

Ornstein-Uhlenbeck process. In the following, we implement some com-
putations for the very special linear drift case, i.e. where f(x) = −µx, µ > 0. The
knowledge of a closed form distribution for this process [24] enables a comparison
of it with the outcome of the simulations. We have chosen the following param-
eters: K = 15,∆ = 1,m = 0, σ = 1. Choosing a µ = 0.5, the solution process
of (9) is trivially distributed as N (0, 1). We have implemented our abstraction
procedure and the MSC basic algorithms on Matlab. Figure 2 illustrates the
result we obtained using an abstracting MSC with a state cardinality of 50. The
Table shows that by augmenting the state space of the MSC in our simulations,
that is by lowering the refinement constant, the error bounds for the steady state
converge to zero.

8 Conclusions

The main contribution of this paper is to provide an abstraction algorithm for
dt-SHS. The abstraction is into the class of MSC. We derive a relation between
3 Again, we inescapably introduce an approximation on the otherwise possibly infinite

error bounds for the probabilities associated to transition to and from the domains
lb, ub.



MSC state space cardinality 30 50 100 200

Steady state estimation error 0.06 0.05 0.04 0.03

Fig. 2. Simulation outputs.

the number of discrete states of the abstraction, the structure of the continuous
dynamics of the original system, and the desired precision in estimating the
steady state. As a first result towards more general probabilistic model checking
of SHS, the abstraction is employed to assess the steady state of the original
system with arbitrary precision. Other future directions aim at extending the
results to more general SHS models.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge,
Massachusetts (2002)

2. Alur, R., Henzinger, T., Ho, P.H.: Automatic symbolic verification of embedded
systems. IEEE Trans. on Software Engineering 22 (1996) 181–201

3. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid
systems. Proceedings of the IEEE 88(2) (July 2000) 971–984

4. Pappas, G.: Bisimilar linear systems. Automatica 39(12) (2003) 2035–2047

5. Girard, A., Pappas, G.: Approximation metrics for discrete and continuous sys-
tems. IEEE Transactions on Automatic Control (accepted)

6. Henzinger, T.A., Majumdar, R., Prabhu, V.: Quantifying similarities between
timed systems. In: Proceedings of the Third International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS). Volume 3829 of Lecture
Notes in Computer Science., Springer (2005) 226–241

7. D’Innocenzo, A., Julius, A., Di Benedetto, M., Pappas, G.: Approximate timed
abstractions of hybrid automata. In: Proceedings of the 46th IEEE Conference on
Decision and Control. New Orleans, Louisiana, USA. (2007)

8. Julius, A., Pappas, G.: Approximate abstraction of stochastic hybrid systems.
IEEE Trans. Automatic Control (accepted)

9. Lichtenberg, G., Rostalski, P.: Using path integral short time propagators for
numerical analysis of stochastic hybrid systems. In: Proceedings of the 2nd IFAC
Conference on Analysis and Design of Hybrid Systems, Alghero, Italy. (2006) 179–
184

10. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Physical
Chemistry 81,25 (1977) 2340–2361



11. Kushner, H.J.: Approximation and Weak Convergence Methods for Random Pro-
cesses with Applications to Stochastic Systems Theory. MIT Press, Cambridge,
Massachussets (1984)

12. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous time
markov chains. ACM Trans. on Comp. Logic 1(1) (2000) 162–170

13. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineering
29(6) (2003) 524–541

14. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In Thiagarajan, P., ed.: Proc. 15th Conference on Foundations of Software
Technology and Theoretical Computer Science. Volume 1026 of Lecture Notes in
Computer Science. Springer Verlag (1995) 499–513

15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In Bernardo,
M., Hillston, J., eds.: Formal Methods for the Design of Computer, Communication
and Software Systems: Performance Evaluation (SFM07). Volume 4486 (Tutorial
Volume) of Lecture Notes in Computer Science. Springer (2007) 220–270 To ap-
pear.

16. Amin, S., Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Reachability analysis
for controlled discrete time stochastic hybrid systems. In Hespanha, J., Tiwari,
A., eds.: Hybrid Systems: Computation and Control. Lecture Notes in Computer
Science 3927. Springer Verlag (2006) 49–63

17. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall/CRC Press,
London (1993)

18. Bujorianu, M.L., Lygeros, J.: Toward a general theory of stochastic hybrid systems.
In Blom, H., Lygeros, J., eds.: Stochastic Hybrid Systems. LNCIS 337. Springer
Verlag (2006) 3–30

19. Hartfiel, H.J.: Markov Set-Chains. Volume 1695 of Lecture Notes in Mathematics.
Springer-Verlag Berlin Heidelberg (1998)

20. D’Innocenzo, A., Di Benedetto, M.D., Di Gennaro, S.: Observability of hybrid
automata by abstraction. In Hespanha, J., Tiwari, A., eds.: Hybrid Systems: Com-
putation and Control. Volume 3927 of Lecture Notes in Computer Science. Springer
Verlag (2006) 169–183

21. Girard, A.: Approximately bisimilar finite abstractions of stable linear systems.
In: Hybrid Systems: Computation and Control. Volume 4416 of Lecture Notes in
Computer Science. Springer Verlag (2007) 231–244

22. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In
Lynch, N., Krogh, B., eds.: Hybrid Systems: Computation and Control. Lecture
Notes in Computer Science 1790. Springer Verlag (2000) 160–173

23. Milstein, G.: Numerical Integration of Stochastic Differential Equations. Kluwer
Academic Publishing (1994)

24. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applica-
tions. 6th edn. Springer-Verlag (2003)


